首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   787篇
  免费   50篇
  国内免费   12篇
化学   501篇
晶体学   14篇
力学   10篇
数学   222篇
物理学   102篇
  2023年   10篇
  2022年   21篇
  2021年   24篇
  2020年   40篇
  2019年   22篇
  2018年   23篇
  2017年   18篇
  2016年   54篇
  2015年   23篇
  2014年   34篇
  2013年   53篇
  2012年   53篇
  2011年   48篇
  2010年   19篇
  2009年   22篇
  2008年   34篇
  2007年   44篇
  2006年   30篇
  2005年   26篇
  2004年   14篇
  2003年   26篇
  2002年   32篇
  2001年   22篇
  2000年   11篇
  1999年   8篇
  1998年   3篇
  1997年   6篇
  1996年   10篇
  1995年   6篇
  1994年   4篇
  1993年   4篇
  1992年   6篇
  1991年   9篇
  1990年   3篇
  1989年   4篇
  1988年   7篇
  1986年   3篇
  1985年   6篇
  1984年   7篇
  1983年   2篇
  1982年   6篇
  1981年   5篇
  1980年   8篇
  1979年   13篇
  1978年   9篇
  1977年   2篇
  1976年   5篇
  1975年   4篇
  1973年   2篇
  1967年   2篇
排序方式: 共有849条查询结果,搜索用时 22 毫秒
1.
The mono- and di-chloroform solvates of [Au2(μ-1,2-bis(diphenylarsino)ethane)2](AsF6)2 undergo single-crystal-to-single-crystal transformations that result in gain (over 12 hours) or slow loss (over five years) of only one chloroform molecule. The change in solvation results in changes in the structure and luminescence of the digold cation. The cation consists of a pair of slightly bent As-Au-As units that are connected through the two bridging dpae ligands and by aurophilic interactions with Au⋅⋅⋅Au contacts of 3.05152(15) Å in the disolvate or 2.9570(5) Å in the monosolvate.  相似文献   
2.
Huynh  N.  Youssef  G. 《Experimental Mechanics》2021,61(3):469-481
Background

Polymer mechanics and characterization is an active area of research where a keen effort is directed towards gaining a predictive and correlative relationship between the applied loads and the specific conformational motions of the macromolecule chains.

Objective

Therefore, the objective of this research is to introduce the preliminary results based on a novel technique to in situ probe the mechanical properties of polymers using non-invasive, non-destructive, and non-contact terahertz spectroscopy.

Methods

A dielectric elastomer actuator (DEA) structure is used as the loading mechanism to avoid obscuring the beam path of transmission terahertz time-domain spectroscopy. In DEAs, the applied voltage results in mechanical stresses under the active electrode area with far-reaching stretching in the passive area. Finite element analysis is used to model and simulate the DEA to quantify the induced stresses at the observation site over a voltage range spanning from 0 V to 3000 V. Additionally, a novel analysis technique is introduced based on the Hilbert-Huang transform to exploit the time-domain signals of the ultrathin elastomeric film and to defy the limits set forth by the current state-of-the-art analysis techniques.

Results

The computational result shows a nonlinear relationship between the effective stresses and the applied voltage. Analysis of the terahertz time-domain signals shows a shift in the delay times and a decrease in signal peak amplitudes, whereas these characteristics are implicitly related to the change in the index of refraction.

Conclusions

In all, the results evidentially signify the interrelationship between the conformational changes and applied mechanical stress.

  相似文献   
3.
Designs, Codes and Cryptography - The paper introduces a method for constructing 2-resolvable t-designs for $$t=3,4$$ . The main idea is based on the assumption that there exists a partition of a...  相似文献   
4.
5.
Two new rod-packing metal–organic frameworks (RPMOF) are constructed by regulating the in situ formation of the capping agent. In CPM-s7, carboxylate linkers extend 1D manganese-oxide chains in four additional directions, forming 3D RPMOF. The substitution of Mn2+ with a stronger Lewis acidic Co2+, leads to an acceleration of the hydrolysis-prone sulfonate linker, resulting in presence of sulfate ions to reduce two out of the four carboxylate-extending directions, and thus forming a new 2D rod-packing CPM-s8. Density functional theory calculations and magnetization measurements reveal ferrimagnetic ordering of CPM-s8, signifying the potential of exploring 2D RPMOF for effective low-dimensional magnetic materials.  相似文献   
6.
Herein, a SnCl4-catalyzed intramolecular, interrupted homo-Nazarov cascade biscyclization to access angular (hetero)aryl-fused polycycles is reported. Subsequent decarboxylation of the readily enolizable products afforded the angular products in up to 71 % yield over two steps, with the trans-diastereomers as the major products. The cyclopropyl homo-Nazarov cyclization precursors were formed using a scalable and modular synthetic route that, ultimately, offers access to 6,6,6-, 6,6,5-, 6,5,6-, 6,6,5,6-, and 6,6,6,5-fused angular polycyclic products. To showcase the rigor and utility of the method, an 8-step total synthesis of (±)-1-oxoferruginol, an antibacterial aromatic abietane diterpenoid, was disclosed.  相似文献   
7.
Tropylium bromide undergoes noncatalyzed, regioselective additions to a large variety of Michael acceptors. In this way, acrylic esters are converted into β-bromo-α-cycloheptatrienylpropionic esters. The reactions are interpreted as nucleophilic attack of bromide ions at the electron-deficient olefins and the approach of the tropylium ion to the incipient carbanion. Quantum chemical calculations were performed to elucidate the analogy to the amine- or phosphine-catalyzed Rauhut–Currier reactions. Subsequent synthetic transformations of the bromo-cycloheptatrienylated adducts are reported.  相似文献   
8.
9.
Dielectrophoresis (DEP) is a successful method to recover nanoparticles from different types of fluid. The DEP force acting on these particles is created by an electrode microarray that produces a nonuniform electric field. To apply DEP to a highly conducting biological fluid, a protective hydrogel coating over the metal electrodes is required to create a barrier between the electrode and the fluid. This protects the electrodes, reduces the electrolysis of water, and allows the electric field to penetrate into the fluid sample. We observed that the protective hydrogel layer can separate from the electrode and form a closed domed structure and that collection of 100 nm polystyrene beads increased when this occurred. To better understand this collection increase, we used COMSOL Multiphysics software to model the electric field in the presence of the dome filled with different materials ranging from low-conducting gas to high conducting phosphate-buffered saline fluids. The results suggest that as the electrical conductivity of the material inside the dome is reduced, the whole dome acts as an insulator which increases electric field intensity at the electrode edge. This increased intensity widens the high-intensity electric field factor zone resulting in increased collection. This informs how dome formation results in increased particle collection and provides insight into how the electric field can be intensified to the increase collection of particles. These results have important applications for increasing the recovery of biologically-derived nanoparticles from undiluted physiological fluids that have high conductance, including the collection of cancer-derived extracellular vesicles from plasma for liquid biopsy applications.  相似文献   
10.
Type 2 Diabetes Mellitus (T2D) is a chronic, obesity-related, and inflammatory disorder characterize by insulin resistance, inadequate insulin secretion, hyperglycemia, and excessive glucagon secretion. Exendin-4 (EX), a clinically established antidiabetic medication that acts as a glucagon-like peptide-1 receptor agonist, is effective in lowering glucose levels and stimulating insulin secretion while significantly reducing hunger. However, the requirement for multiple daily injections due to EX's short half-life is a significant limitation in its clinical application, leading to high treatment costs and patient inconvenience. To address this issue, an injectable hydrogel system is developed that can provide sustained EX release at the injection site, reducing the need for daily injections. In this study, the electrospray technique is examine to form EX@CS nanospheres by electrostatic interaction between cationic chitosan (CS) and negatively charged EX. These nanospheres are uniformly dispersed in a pH-temperature responsive pentablock copolymer, which forms micelles and undergoes sol-to-gel transition at physiological conditions. Following injection, the hydrogel gradually degraded, exhibiting excellent biocompatibility. The EX@CS nanospheres are subsequently released, maintaining therapeutic levels for over 72 h compared to free EX solution. The findings demonstrate that the pH-temperature responsive hydrogel system containing EX@CS nanospheres can be a promising platform for the treatment of T2D.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号